Section 2.1: Properties of Matrix Operations

Theorem 2.4: Throughout this result, the symbol 0 represents the $m \times n$ zero matrix. The symbols 0 and 1 are used to denote the real numbers zero and one.
(1) For all $A \in M_{m, n}(\mathbb{R}), 0 \cdot A=\mathbf{0}$.
(2) For all $A \in M_{m, n}(\mathbb{R}), 1 \cdot A=A$.
(3) For all $\alpha \in \mathbb{R}, \alpha \cdot \mathbf{0}=\mathbf{0}$.
(9) For all $A, B \in M_{m, n}(\mathbb{R}), A+B=B+A$ (commutativity)
(3) For all $A, B, C \in M_{m, n}(\mathbb{R}),(A+B)+C=A+(B+C)$ (associativity)
(6) For all $A \in M_{m, n}(\mathbb{R})$ and all $\alpha, \beta \in \mathbb{R},(\alpha+\beta) A=\alpha A+\beta A$ (distributivity)
(0) For all $A, B \in M_{m, n}(\mathbb{R})$ and all $\alpha \in \mathbb{R}, \alpha(A+B)=\alpha A+\alpha B$ (distributivity)
(8) For all $A \in M_{m, n}(\mathbb{R})$ and all $\alpha, \beta \in \mathbb{R},(\alpha \beta) A=\alpha(\beta A)$.
(9) For all $A \in M_{m, n}(\mathbb{R}), A+(-A)=(-A)+A=\mathbf{0}$.

Properties of Matrix Multiplication

Theorem 2.10:

(1) For all $A \in M_{m, n}(\mathbb{R})$ and all $k \geq 1, A \mathbf{0}_{n \times k}=\mathbf{0}_{m \times k}$ and $\mathbf{0}_{k \times m} A=\mathbf{0}_{k \times n}$.
(2) For all $A \in M_{m, n}(\mathbb{R}), I_{m} A=A$ and $A I_{n}=A$.
(3) In particular, if A is an $n \times n$ matrix, $I_{n} A=A I_{n}=A$.
(9) If $A \in M_{m, n}(\mathbb{R}), B \in M_{n, k}(\mathbb{R})$, and $C \in M_{k, l}(\mathbb{R})$, then $A(B C)=(A B) C$. (associativity)
(3) If $A \in M_{m, n}(\mathbb{R})$ and $B, C \in M_{n, k}(\mathbb{R})$, then $A(B+C)=A B+A C$. (distributivity)
(6) If $A \in M_{m, n}(\mathbb{R}), B \in M_{n, k}(\mathbb{R})$, and $\alpha \in \mathbb{R}$, then $A(\alpha B)=\alpha(A B)=(\alpha A) B$.

