Section 2.1: Properties of Matrix Operations

Theorem 2.4: Throughout this result, the symbol **0** represents the $m \times n$ zero matrix. The symbols 0 and 1 are used to denote the real numbers zero and one.

- For all $A \in M_{m,n}(\mathbb{R})$, $0 \cdot A = 0$.
- **2** For all $A \in M_{m,n}(\mathbb{R})$, $1 \cdot A = A$.
- **3** For all $\alpha \in \mathbb{R}$, $\alpha \cdot \mathbf{0} = \mathbf{0}$.
- For all $A, B \in M_{m,n}(\mathbb{R}), A + B = B + A$ (commutativity)
- For all $A, B, C \in M_{m,n}(\mathbb{R}), (A + B) + C = A + (B + C)$ (associativity)
- For all $A \in M_{m,n}(\mathbb{R})$ and all $\alpha, \beta \in \mathbb{R}$, $(\alpha + \beta)A = \alpha A + \beta A$ (distributivity)
- For all $A, B \in M_{m,n}(\mathbb{R})$ and all $\alpha \in \mathbb{R}$, $\alpha(A + B) = \alpha A + \alpha B$ (distributivity)
- So For all $A \in M_{m,n}(\mathbb{R})$ and all $\alpha, \beta \in \mathbb{R}$, $(\alpha\beta)A = \alpha(\beta A)$.
- **②** For all *A* ∈ $M_{m,n}(\mathbb{R})$, *A* + (−*A*) = (−*A*) + *A* = **0**.

Properties of Matrix Multiplication

Theorem 2.10:

- For all $A \in M_{m,n}(\mathbb{R})$ and all $k \ge 1$, $A \mathbf{0}_{n \times k} = \mathbf{0}_{m \times k}$ and $\mathbf{0}_{k \times m} A = \mathbf{0}_{k \times n}$.
- **2** For all $A \in M_{m,n}(\mathbb{R})$, $I_m A = A$ and $A I_n = A$.
- **③** In particular, if *A* is an $n \times n$ matrix, $I_n A = A I_n = A$.
- If $A \in M_{m,n}(\mathbb{R})$, $B \in M_{n,k}(\mathbb{R})$, and $C \in M_{k,l}(\mathbb{R})$, then A(BC) = (AB)C. (associativity)
- So If $A \in M_{m,n}(\mathbb{R})$ and $B, C \in M_{n,k}(\mathbb{R})$, then A(B + C) = AB + AC. (distributivity)
- If $A \in M_{m,n}(\mathbb{R})$, $B \in M_{n,k}(\mathbb{R})$, and $\alpha \in \mathbb{R}$, then $A(\alpha B) = \alpha(AB) = (\alpha A)B$.